An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data
نویسندگان
چکیده
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.004 0924-2716/ 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. ⇑ Corresponding author. Address: Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, 419 Baker Hall, 1 Forestry Dr., Syracuse, NY 13210, United States. Tel.: +1 (315) 470 4824; fax: +1 (315) 470 6958. E-mail address: [email protected] (G. Mountrakis). Wei Zhuang, Giorgos Mountrakis ⇑
منابع مشابه
Processing Full-waveform Lidar Data to Extract Forest Parameters and Digital Terrain Model: Validation in an Alpine Coniferous Forest
Small footprint discrete return lidar data have already proved useful for providing information on forest areas. During the last decade, a new generation of airborne laser scanners, called full-waveform (FW) lidar systems, has emerged. They digitize and record the entire backscattered signal of each emitted pulse. Fullwaveform data hold large potentialities. In this study, we investigated the p...
متن کاملApplication of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model
Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over ...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملUsing airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates
Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...
متن کاملApplication of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS
Forest canopy height is an important biophysical variable for quantifying carbon storage in terrestrial ecosystems. Active light detection and ranging (lidar) sensors with discrete-return or waveform lidar have produced reliable measures of forest canopy height. However, rigorous procedures are required for an accurate estimation, especially when using waveform lidar, since backscattered signal...
متن کامل